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THE COUPLING oF fIEXURAL PROPELLER VIBRATIONS WITH
THE TORSIONAL CRANKSHAFT VIBRATIONS*

By.J. Meyer

The exact mathematical treatment of the problem is
possible by replacing the propeller blade by a homogene-—
ous prismatic rod. .Concluslons can then be drawn as to
the behavior of an actual propeller, since tests on pro-—
peller blades have indicated a gualitative agreement
with the homogeneous rod. The natural fredquencies are
determined and the stressing of the systems under the
various vibration modes are-discussed.

SUMMARY |

- For the homogeneous Drismatic rod assumed equivalent
to the proveller blade, the mathematical solution for the
coupling of. the flexural with the torsional vibrations of
an elastic system consisting of a single mass or of sev-—
eral masses is presented, and wvalid conclusions are de-
rived for the propeller. Extensive tests .confirmed the
theoretical results. -

The most. important conclusion derived was that the
coincidence of a harmoniac .with the torsional vibration,
since it gives two close-lying natural frequenciesg of
the crankshaft-propeller gystem is unfavoraeble, .the crank-—
shaft and hub, the propseller blade root, and also the
blade itself. at the tip being theteby streSsed to a dan—
gerous degree., ' By spreadlng avart the two frequencies,
as can be done by a change in the elasticity of the tor~
. sionally vidrating component system, the harmonics in
guestion ¢an be rendered harmless because their position
isg little affected by .a change in the magnitudes of the
torsionally vibrating system, ‘The torsional‘vibration of

*"Die Kopplung der Luftschrauben~31egeschw1ngungen mit
den Lurbelwellen—Drehschwingungen." Jahrbuch 1938 ded
deutschen Luftfah;tforschung pp. II 141-159.
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the system cannot, however, be eliminated by similar
combinations. This can be done only by ‘cemploying a
damper or an elastic hubd (reference»l?) The maximum
vibration momeifit in-the blade root "~ barring a few excep—
tions — always acts in the direction of the chord.

OBJECT OF THE INVESTIGATION

In recent years the gquestion as to the cdause and
prevention of propeller failure in flight has become of
greatest importance., The failures are all found to be
caused by fatigue stresses due to the flexural vibrations
of the propeller blade. A torsiogram of an As—8 engine
was of particular interest (fig. 1). The curve shows,
instead of a single maximun, two maximumsg of the sixth
order, This phenomenon indicates vibrations of the pro-
peller blade because new degrees of freedom can be added
to those of the crankshaft only through the presence of
an elastic propeller blade. It may be remarked in passg-—
ing that in a few cases vibration of the propeller could
be established by the naked eye mlone. In order to be
able to measure experimentally the propeller vibrations
occurring in flight, the DVL, since 1934, has been em-
ploying the test anparatus shown in flgure 2 (reference
17). The setup reproduces the vibrations of the actual
radial engine-propeller system, A shaft supported on
two bearings and the torsional elasticity of which is
of the order of magnitude corresponding to that of most
crankshafts carries at one end the propeller with hub to
be investigated and at the other end a rotating mass on
which two unbalanced weights-displaced in the same sense
by. 180 excite the torsioral harmonics, corresponding to
" the pure v1brat10n torque of the engine. The mass moment
of inertia likewise corresponds approximately to that of
a large radial engine. With the most usual types of pro—
pellers, for rotations of the unbalanced weight up to
10,000 rpm, there were always obtained three frequencies
at whlch the entire system strongly vibrated (table 1).
That appears striking in table 1 is that the frequencies
of the center column are practically constant while those
of the other two are not, and hence depend-to a large
extent on the given propeller type. The form of the vi-
bration of the second and third frequencies was in most
of the cases very similar, although for the second fre—
guency the rotating mass — with few exceptions — under—
went considerably -larger deflections., The notation
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n,, ng, and ny of the columns will be explained. In the

course of these investigations the gquestion arose to whatl
extent the flexural vropeller vibrations measured on this
setup were independent of the coupled torsionally vibrat-
ing systenm.

In the present paper, starting from the differential
equation setup for the elastic propeller, the relations
holding for the coupling of the flexural propeller vibra-
tions with the torsional crankshaft vibrations are derived.*
An explanation is thereby provided for.the above- mentioned
phenomena. The natural frequencies of the crankshaft-
propeller system cannot, however, be numerically determined
in this manner. An improved test setup is proposed that
can also be used for in-line engines. It is shown, further-
more, that coincidence of the natural frequencies of both
component systems, crankshaft and propeller, is particu-
larly dangerous and that the natural Tfrequencies of the
entire system and the deflections for equal exciting torque
in gencral devend on the propeller pitch angle.

SETUP OF TEE DIFFZRENTIAL EQUATIONF FOR FREE VIBRATION

There 1s Tirst considered the equivalent system of
a radial engine with propeller assumed rigid (fig. 3).

s

s ] ’ . ’ Y
E)D engine o kgc—zjnzz\ﬁo/‘” "””’”"'77”/”’5”/’“’ ”f””‘”fj partsefenyine
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¢ shaft elasticity, kgcm/rad . )
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The differential equation for this case is o/ 24/44
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with the soluticn

or

¥4t the coaclusion of the above investigation there was
brought to the attention of the author a paper which like-—
wise talkes up the same problenmn. (See reference 19.)




4 NACA Technical Memorazndum No., 1051
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“Actually, however, on account of the elasticity of the
propeller blades the crankshaft will not be coupled to a
rigid mass but to a vibrating structure with infinite
degrees of freedom, The propeller is therefore replaced
by an elastic rod which is fixed to a hub, 8y (fig. 4).

Equilibrium is possible only if the rod, vibrating
at position x = 1, produces 'a moment the componsnt oOf
which in the plane at right angles to the shaft axis is
exactly equal to that acting on the mass 06yx. A rod can

vibrate in two mutually perpendicular directions, corre—
sponding to the two principal axes of inertia of its

cross section, In the general case if the rod is s2t. ob-
ligue to the torsional vibration plane, vibrations about
the two principal axes will be excited. If y(x) denctes
the deflection, the morent produced about the longer axis
(the chord) is EJ(L)y"%Z) and that about the shorter

axis EJ%%) y%gg. Both moments possess a component in

the torsiomnal vibration plane. If .« denotes the angle
which the shorter principal axis of the section makes

with the plane of rotation, the differential equation of
the gystem from which the natural fregquencies are computed
when there are § rods is

6p 9p + clop — ox) = O b
0y oy + cloy — 9p)
7
= -5E J%%) y%%% cos « + J(Z) y%z) sin %?
s f1 5 £1 fo £
22| (g - .l”' b(x) & = 0 (
dx~ L oy - 3t > 2)
_ h
= h 2
B 0° J(X) oy j|+ u,(x) oy = 0
dx= L ox D
ot

with the Dboundary conditions
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1. v"! (0) = © 3, vtfl - : th . .
‘ v (0) Y4 Py €08 @i ¥4 = @ osina
2. y" 0) = 0 4. yIv o o cos o b = r sin

A y(z) P Y Py

and p(x) and J(x) may be written u(;)Q(x) and
J(Z)P(x). The function y(x,t), according to Bernoulli,

may be written y(x,t) = y(x) sin wt. The partial differ—

ential equation then goes over into the ordinary linear
equation

e 2 fZ' -
j;_ £ Q_K__] i £ 5. K = ui*
P 4 ) T T EJ%”
L - (3)
= 4 h 4 H w
“"f%) M*] S Qg Vg T 0 b = EH
dx ax® § 5J2
(1)
and setting
~op = @y sin wt and oy = 8y sin wt
the system of equations becomes
—GD UJ2®B + C((DIJ - QE) = 0 3
= —Sd'[J(Z) y(l) cos o + J(Z) y,z) sin %}
[P(x) ym] € Qy vy = O g
]
n_,h ] e B,
[P(X) I {x) Q) T(x) T J

The solution of the problem depends on the solution of the
lagt two differential equations (4). The variation of the
functions J(x) and w(x) over the propeller length is

such, however, that great difficulty is encountered in ob- |
taining the complete solution in exact form. The propeller
blades are thereforé replaced by homogeneous rods of



"

6 ¥ACA Technical Hemorandum No. 1051r

"rectangular section. TFor this case the solution can be
exactly obftained, and provides information as to the rela-—
tions for the actual propeller.

SOLUTION FOR THE HOMOGENEOUS ROD

For the prismatic homogeneous rod with P = Q = 1
the two differential equations (3) simplify to

IV fz'_l_4 £l g

7 (x) C V(x) T

SV B e B g (5)
(x) (x)

Taking account of the boundary conditions 1 and 2, there
arc obtained for y(x) the expressions

yiz) = Af? (Cosh ¥x + cos kx) + gl (Sinh kx + sin kx)
X

h
T (x)

h h
A7 (Cosh ix + cous ix) + B (Sinh ix + sin ix)

where A and B are constants.

The following brief notaticn is used for several ex-—

pressions arising in the couputation of y?L) and satis—
fying the boundary conditions 3 and 4, where k! = k!
and 10 = 1!
Sinh k! cos k' — Cosh k! sin k'
=f (k')

1 + Cosh k! cos k!

Sinh k! — sin k! Cosh k! — cos k!
= o(k'); = T7(k')
Cosh k! + cos k! Cosh k' + cos k!

similarly for it,.
Therg is‘then obtained for

£1 £l LB , &
cos @ v
(1) “ ()

Y v
(1) ° ()

sin o
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the expression

i;) g c0s? a ﬁ’-{f(k')[l - % k! c(k')]

ey bt e B {efn -3 o et ] e paran)

I
g
3
=

g;LJ

The above can be written dbriefly

£l

J(Z) @N cos® o E- (G(k‘) + —itl il tan® o H(l‘)]

kl
J(t)

5

wvhere G(k') and H(i') denote tne generally different
functions in the braces.

The expression which is t 0 be set equal to

SE ‘sz fZ + J B i ‘}

- 0 in o
L) ¥iyy eos @ (1) Yy s

is

4 2
BD Oy w - c(eD + BN) w o= 1 g
- i N g, N
. c - SD w= M
) Y- 2 a4 - B
Setting éL = Q and w? = v k! wheré V% = —~ill
D “ K LR LL ( z’ ) L
there is obtained
1 - 2o xr?
(l

- —@%‘;\{ fI»'I('k') = @15\} o 4 T 2 4 ‘
v okt LBD + 9N<l - 55 k! >}
Eliminating ¢N;-the solution becomes
. . l
cos® o [G(k') + ~izl EJ tan® o H(i')}
A ) y ‘ (Z)

£l -1
~SEJ (1) %f”fM(k')'ﬂ

or
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Fy (k') = Fg (k') ° - . (s)

The expression on the left-hand side is conveniently
transformed into

2
4
3 1 - 2 Rk .
s l g
py (1) = —2L2) q L. (7)
6p 9 ‘ 2 k!
1+ ﬁ(l -2 k'4>
8p o°
It rewains to replace i' by k! in the expression Fs(k’).
WS 4 2
k4 = E_(...L_.%TE— and i = L_L._(.l'_%_.ui_
so that
Hence
Fg (k') = z (8)
cos® a‘-G(k') +
L

Figure 5 shows the function Fg (k') for o = 0 and
r = 0, The points of intersection with the axis.,of abscis-
sas give the characteristic wvalues ke' for the rod fixed
at x = 1 with the boundary conditions y™

SM(0) = y1(0) = 0; y'(}) = y(1) = O

the values of k' are 1.875, 4,694, 7,855, 10.996, and
so forth.

The asynptotic positions 3.927, 7.068, 10,210, and
so forth,give the characteristic values k,' of the rod
for the boundary conditions
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y" (Q) = y*(0).= 05 y"(L) = y(1) =-0

Figures 6 and 7 show the function "Fg(k!') for a = O and
r = 0,1 1 and 0,2 !, respectively, While the zero posi-
tions of Fg(k') remain the same, the asymptotic positions

are displaced., This is explained by the fact that for the
frequencies given by the zero positions, the hudb is always
at rest and therefore plays no part no matter how large r
is, The boundary conditions for the rod are the same. For
the asymptotic positions one boundary condition was y (1) =0,
Lctually, however, it is y(l) = rdy. For this reason the

-agsymptotic position must be displaced.

Figures 8 to 13 give the function Fg(k') for r = O
and o = 0%, 15°, 30°, 45°, 60°, 90° for a ratibo
Jh/JL 16. TFigures 14 and 15 give the Fg(k') function
for a 60 and r = 0,1 ! and 0.2 !, respectively.

It may be seen that for the obliquely set rod the two
functions Fg(k') for a« = 02 and o = 90° are superposed.
Since the gzero positions remain the same, the wvarious
branches of the curve must crowd together. The more one of
the two principal vibration directions is turned out of the
torsional vibration plane, the more the corresponding
curves draw together. Bach branch of the Fg(k) curve

again runs, between two asymptotes. The corresponding value
of k! gives for both vibration directions a composite
form of vibration such that the bending moment of the rod
at the blade root is zero in the torsional vibration plane.

The position of the Fg(k') branches for the vibra-—

tion about the chord depends on the ratio
4
y/

EY
I{1)
T(1)

h f:
For J(l)/J(%) = 16 the above ratio is equal to 2. The
zero positions are therefore 'at double the kg' wvalues.
of the vibrations about the small axis: that is, 3.750,
9.388, and so forth. From this 1t may be seen that for

the houogeneous prismatic rod fixed at one end, the fun—
damental vibration about the small axis is followed
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directly by the fundamental v1br%tions about the larger
axis, provided the ratio ( )/J(L) is smaller than

(4.694/1.875) = 39,3, If the ratio is larger, it means
that the fundamental vibration about the longer agis fol-
lows only after the first harmonic about the smaller axis.
This holds quite generally also for nonhomogeneous rods
and hence for vropellers except that the ratio J%l)/J{;)

and also G(k') and E(i') are different functions.

With each vibration of the rod there is thus associ-
ated such a PFg(k') branch — that is, since there are
two vibration directions each degree is represcented twice.
In general, the ys(k') tranch correspondlng to the nth

dcgree 1ntersects the k' axis at kg' and at

/ (”/J(z)k' if G(x') and H(i') are equal.

The function Fg(k') 1is quite independent of the
materlal constants of the rod. It is valid for all rods
naving J(x) and p(x)] constant over their length. 411
constants of the crenkshaft-rod system except for the ratio
r/1 and Jn/Jr1 are included in the expression for

Fy(k?')s This has the advantage that on varying a constant

only one function is varied and the relations are thus
nore clearly seen.

The engine function possesses a zero and, if @Oy £ 0,
an infinity., The zero — that is, the intersection with
the k! axis, gives the natural frequency JF€7§5 of the
torgsional component system up to the hub. The infinity

gives the natural frequency == of the system:

© 8p ey
rotating mass — elasticity -~ mass of hub., The zero posi-—
tion depends only on the ratio U/Q The natural frequen-—
cles ¢f the entire system 1nclud1ng the rod are obtained
fron the relation w = vV k'?, where the k' are determined
by the intersectiocns of the two functions Fs(k') and

Fy(k?). The validity of these relations was checked with
the ald of numerous tests with rectangular section iron
rods, Figure 16 shows, attached to the shaft, the hud in
which two prismatic homogeneous rods may be inserted at
different settings. From the Fs(k’)—FM(k') diagram it
is clear that through the coupling the natural freguenciles
(zeros of Fy(k') and Fq(k')) of the component systems
are displaced. '
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There will now be determined the natural frequencies
of a single—mnass system with rectangular rod the constants
of which correspond to those of a 700~horsepower radial
engine, Let by = 10 cmkgs?®; Smle = 1000 cmkgs®; Q = 630s™?

(n = 6000 rpm) and in the Tirst case 8y = O, and in the
second case BN = GD. )

For each case the functions Fg and Fy are drawn
for a bBlade which corresponds in its dimensions fto a large
propeller, oIn the function Fs(k'), Jh/JfL = 163 r = 0;
and o = 60 , In the function ¥y, v = 40. The first
case on figure 17 corresponds to the relations obtaining
for an adjustable pitch propeller or for a noncontrollable
pitch wood propeller., The second case on figure 138 cor—
r=gponds to that of controllabtle pitch propeller for which
tlie mass moment of inertia of the hub may have the same
value as that of the engine., There is thus obtained:

n; no n, n, ng
(rom)

Case 1 1530 6100 8400 22,600

Case 2 1530 81C0 8400 192,200 23,500

For compmarison there are given the corresponding values
that were obtained for a BlT-Electron-controllable—pitch
proveller on a test stand similar to that of figure 2:
6p was egual to 11.7 kgems® Oy = 6 to 9 cmkgs®

(estimated), Q = 650s ",

1

nl N Ny Ny
(rpm)
2000 Bs00 810C 10,800

The rod in each case possessed the vibration form obtained
by substituting the value k' given by the point of inter-—
section in the function y(x). It can only pvossess its
natural vibration form for one end held fixed if a node
cccurs in the hubd and the hudb is thus at rest. This is
possible for the following values of k':

k! = 1.875, 4.694, 7.855, and §o forth.

The point of intersection of TFy with the k' axis
is then always simultaneously the intersection of an Fg

branch with the 2% axis. It is seen that in these
cases the freduency of the entire system cannot vary if
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the blades are rotated in the hub — that is, their pitech
is varied. In all other cases the natural frequency of
the entire system varles. It can only possess the form
of vibration corresponding to the condition y"(l1) = O
if the infinity of. the Fs(k') function coincides with

one of the Fy(k') function. All the vibration: over both
axes can always be excited as long as neither of the two
brincipal. vibration planes lles in the torsional vibration
ylane. That the previous conclusions hold similariy for
rongllers is shown by figure 19, which gives the varia-
sion with pitch angle of the first three natural frequen—
cies of a single—nass system with rectangular section rod,
a BWM controllable pitch propeller, and an Ag—8 adjustable
iropeller,

Tigurcs 17 and 18 show further that if the interscc-—
tion of FS with the wu branch of ¥y 1lies above the
k! axis, it means that in the torsional-vibrating system
there are uw —-1 nodes and in the blade there are v
nodeg waere v is the degree of the intersected Fg
branch. If the point of intersection lies below the k'
axis there are u nodes in the torsional vibrating system
and v — 1 in the blade.

For »ractical purposes a knowleodge of the first three
freguencies is of particular importance, since the others
can only be excited by the high harmonics of the torsional—
force oscillogram which are very small, For thig reason,
it 1s sufficient to consider these first three frequencies
alone, Only two kinds of promnellers arc possible: namely,
these to which the fundamental vibraetion Zbout the chord, on
account of the thin hubd shaft, lies below the first har-—
monic about the smaller axiy and thosc for which the re—
versc 1s the case. .First, case 1 is considered., In fig-—
ure 20, the first three branches cf the Fs(k') function
for the prismatic-homogeneous rod are drawn for a ratio
Jh/JfZ = 16 and a = €0% r = O, The corresponding Fy(k!')
Tnnetion for a = 90° is also shown dotted. The heavy
continuous curves are three Fy(k') functions. The first

represents the case where the natural frequency of the
torsionally vibrating syste:s 1s lower than that of the
fundamental vivration about the chord of the rod fixed at
one ends The second function gives the case where it is
equal to the first harmonic about the small axis, and the
third the case where it is greater than that of the first
Aormonic, -
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There now arises ‘the question as to which of the’

- three freguencies given by the points- of intersection
corresponds to the so-—called crankshaft natural frequency
for the case of a rigid propeller — that is, the frequency
causing the strong deflections recorded by the torsiograph
of the torsionally vibrating system. It is clear that
only one intersection comes into consideration: namely,
that which lies very near the intersection of the FM(k')

curve with the k' axis. This.fact, hdowever, is not by
itself sufficient; since this vibration must also exist
for the propeller setting o = 90°. The preopeller is then
most rigid in the direction of the torsional vibraticn and
the vibrations about the small axis are,as 1% were, un-—
coupled. The case now correspvonds to the rigid propeller.

The case where the prismatic rod is assumed as rigid
with reiﬁrd to vibration about the chord is that for
which (1) == In this case the rod function Fs(k')

is practically of the samne shape as the dotted curve on
figure 20 with the exception, however, that 1t always re—
nains below the the k! axis which it . intersects at
infinity — that is, that the k! axis is an asymptotes
It follows from this that the point of intersection cor-—
responding to the torsional vibration also occurs for

a = 90° and the bdbranch of the rod function intersected
by the engine function FM(k') must pass continuously

into the dotted curve with increasing a. In figure 20,
the so—called crankshaft natural frequency 1s given in
the firgt two cases by the second point of intersection
and in the third case by the third point of intersection.

Figure 21 shows the case where the frequency of the
fundamental vibration about the choéord is '‘greater than
that of the Tirst harmonic about the small axis. The
ratio Jh/JfZ-= 81 and again o = 600, r = 0, F?om what
was said previdusly; there is similarly obtained the so—called
crankshaft natural frequency for the first Fy(kx') func-—

tion from the second point of intersection:and, for the
second and third functions from the third point of inter—
section, .

° " Of the threé frequencies considered, one is thus
unigquely determined as the natural freguency of the crank-
shaft with elastic progeller and it is seen that the other
two points of intersection lie very close to the k' w~val-—
ues for the fundamental vibration and first harmonic about
the small axis of the rod fixed at one end. From all this,
it follows that for high angles « the three possible
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natural frequencies of the system lie very close to the
natural frequencies of the two component rod .and crank-
-shaft systems when the rod is fixed at the hub. One of
the natural frequencies of the system may therefore be
denoted as the crankshaft torsional vibration np and

the two others as fundamental and first harmonic of the
rod or propeller ny and nsi. This explains the nota-
"tion of table 1 and the slight variation in the frequency
in the second column as compared with the variations of
the first and third.

It is seen on figures 17, 18, 20, and 21 that the
first harmonic is least shifted by the coupling. The
torsional vitration of the system can undergo a.relatively
large displacement. It may be seen from the expression
for the engine function (equation (7))that for equal ratio
v/Q it intersects the k' axis at a larger angle the
smaller the rotation mass €p. It follows from this that

for a given propeller and given ratio U/Q the natural
crankshaft frequency of the entire system deviates more
from the natural frequency of the torsionally vibrating
system the greater the rotating mass 6p. In the case

of the rigid assumed propeller, the corresponding expres-~
sion for the torsional natural frequency is

2 2 €D
W = 0 (1 + ==
o1,

In practice only pronellers generally are used for
which the relations are such as are expresgsed by the funec-
tion Fg(k') in figure 20, Fundamentally, the first and

second engine functlons hold for the case when the first
harmonie about the small axis is greater than the torsional
vibration and the third engine function for the case given
in table 1 for the sccond and fifth proepeller, where the
first harmonic of the small axis is lower than the tor-
slonal vibration of the system.

It 1s also seen now how the torsional vibration curve
of figure 1 is posgible. One maximum arises from the
crankshaft vibration, the other from the first harmonic.
Thus, the explanation, that only by the coincidcnce of the
frequency of the crankshaft torsional vibration with the
first harmonic of the'propeller does the first one split
into two coupling frequencies similar to the resonance pen-
dulum, is untengble. These two resonance positions, ac-
cording to the foregoing, are always present. Why suéh
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characteristic is so rarely measured, and why the vibra-—
tion form of the propeller for the second and third
frequenciesg of table 1 may be similar,will be shown later.
Furthermore, the torsional vibration frequency in adjust—
ing the blade to high pitch angles nust drop because the
blade is then set more and more with the wide side in the
torsional vibration direction and thus becomes less rigid,
In order to see this, consider figure 20, High pitch '
means here that o—>0, For the engine function III and
ITI there actually is obtained a lowering of the torsional
vibration frequency. Similarly, for the engine function I
in the case drawn where the natural frequency 2 of the
torsionally vidbrating systewm is greater than that of the
blade about the chord (kg! = 3.750)., If the engine

funetion I, however, would cut the k' axis ahead of

kg! = 34750 the torsional vibration frequemwcy would rise

in setting the blade to & high pitch angle, according to
the rule estabdblished here, that all natural frequencies
of the cntire system with increasing uncoupling of the
torsional with the flexural vibrations are displaced to—
ward the natural frequency of the blade vibration which
is uncouplecd. (See fig. 19, As—8 propeller,)

It will now be shown further how the solution (6)
goes over into that for the rigid rod as P approaches
infinity., This does not show up in the FM(k') to Fs(k')
diagrams. The greater the value of V the steeper the
function Fy(k') for constant 2, and its point of inter—
section with the k! axis lies always more to the left

at small k' values. For the rigid rod (V = o) it would
lie at k! =v’w/v = 0 and the natural frequencies would
assume the indeterminate form w = 0 X oo although w

obviously can still possess also a finite value. The
limit must .therefore be obtained from the formulas. For
this purpose the solution (6) is written

Py(kt) x1° = Fg(kt) x'°

In this way, in the‘expression on the right, only k!
occurs and on the left, only the product vV k'?, which may
be set equal to w., There is then obtained

2
W
1 - =5

S 3

F(kt) x0° = ow(E)]
MM 5 Oy 2

D 1l + = —-g:;'>
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and setting for simplification, a« = 0Q, r =0

2 x!

Fe(kt) gt® = N
T " Sinh k! cos k' — Cosh k! sin k!
When VvV approaches infinity k' will approach zero, and
it is only necessary to investigate the expression for ihe
rcd function, The latter is indeterminate. If the denom-
inator, however, is expanded into a series, then

F‘( (1’:') k'sz

1 3

- (%' A A ..>
3l 5

and for k! = 0, the value of
to =3, The solution for 7V =

i =

\\_/.N

4 ’ 3 5
Q#' L . S
313 51

e |

the fraction becones egual
. then becones

'FM(k') k1% = 5

I'n solving for w, the following equation is then obtained
\-M—" vor) (2 - )

The expression in the first ‘parentheses is no obher,

however, than the mass moment of inertia - referred to the
shalft — of a "propeller" consisting of a prlsmatlc infi~
nitel; rigid rod and may be set equal to Op. Then
. - 3
_S..l:l'...(.}..l_}_._ + e"T = e
3 W L

o0, (0% - F) = 0,07



NACA Technical Memorandum No., 1051 17
SOLUTION FOR NONHOMOGENEOUS RODS

Having discussed the prismatic homogeneous rod,
there will now be investigated how far the computation
may be carried through for the nonhomogeneous rod.
Start from equation (3) and write

Iv

T (x) Txy 7 2P (x) * Pr&

4
3 " - k Q = 0
x) 7 (x) x) ¥ (x) (x) 7 (x)
The difficulty of solution of this differential equation
increases with the complexity of the functions P(x) and
Q(x). TFor this reason there will be set for P(x) and
Q(x) +the simplest, yet still reasonable exponential ex-—

pressions, P(x) =<2;>P and Q(x) =<%>q. Dividing the

equation by P(x) and setting p + ¢ = q, there is ob-—
taincd
" 1 4
yIV + 27 lel + (pe - P) Z.(..K)_. _15_ xe v = 0
(=) x £ 7'€ (x)

In the above differential eguation P can take any values
from —» t0 4o, For 4w > ¢ = —4 it 1s a Fuchs-type
differcntial equation and as such is integrable by means
of series., Solutions defined at x = O are obtained only
if the i cocefficient in a differential equation of the
form

Iv

y<x) + R, y’&;c) + Ry 'V'Ex) + Ra yzt) + Ry y(x) =0

P,

has a pole of, at most, the i’ order. If € < —4 then
x = 0 1is a so—called cssentially singular point, and for
this case there is as yet no complete theory. (See L.
Bierberbach, Differentialgleichungn, pp. 195-196.) A%
any rate, no solutiong can then be found in the form of
convergent series. Thus, the cases are restricted to

o > € =2 —4., Since the case € = —4 1is solved by setting
vy{x) = xP the method of series development starts with
€ = —3. Since only in the cases with €¢°2 = -3 not all

four particular integrals involve logarithms, of which
use cannot be made, the solution of the differential
equation is restricted for +w > p > —» and o > ¢ = —3.
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——1 -
Setting a,, %PTV, there-is obtained, since
as, 1s not to vanlsh,vthe 'characteristic equation®
(. T -1 )
p(p—lxp~+pL2\p—z)—1; + (p=2)(p —3) =0
v | 2

The oabove equation has the four roots

5 — 2 -1 5 - 2p , 1
Py =05 pa=1; o =2-=£& -2 = se=E e
P s 2 2 Pa 2 2

Since Py and Py for the various es of p are

1_1
[

valu
either equal to o and pg or differ from them by an
inteper, the corrasposnding pgrtl*"lmr iptaurala involve
logazrithms and drcp out for our case vher vy (L) =
F(C) « The first two soclusisnsg are 104nd 0 b

1
O
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Pigure 25 shows the Fg(k'!) ecurve for the fundamen—
tal vibratien. o = 0 and r = 0, Although five terms of
the power series were taken, it was. not possible to com—
pute exadtly the second zero position; because for higher
values of. k! +the computation becomes too inaccurate on
account of the rapidly increasing large numbers., The
value must lie between 5.2 and 5,4. The first zero posi-
tion 1s obtained as 2.67. The corresponding experimental
setup is shown on figure 26.

The first zero position f or nonhomogeneous rods can
easily be found by the Ray%?igh method,

' 2
o? < 21 z[P(Jé) Tlx) O
b (1)

Q(x) y(x)z dx

y(x) = x* + ax® + bx® + cx + 4

With the boundary conditions

L y"1(0) = y"(0) = 0; y1(1) = y(1) = O

y{x) Dbecomes y(x) = x* — 4 1® x + 3 1%, There are thus
obtained the first zeros for the following five cases:
1
k! E

4 P ¢ e (Peggggt)

0 0 0 1,880 ’ 0.27

1 1 0 2.69 .75

1 2- -1 2.59

1 4 -3 2.45

1 6 —'5 2031

It ig geen that the first zero for propellers nust
lie in the neighborhood of 2., 3By the Rayleigh method it
is_also possible to gpproximate very closely the functions
(x) and J(x) by suitable polynomialg of x instead of
the simple expression xP or x% so that the first zeros
can almost accurately be obtained, as the positive error
shows for 1,880 as compared with the accurate error wvalue
1.875. Unfortunately, nothing has been gained therebdy
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for the problem under counsideration; since from all that
has been said it is mct practically possidble to compute
-beforehand the natural frequencies of a torsional-flexural
system as was done for the homogeneous prismatic rod.

The only magnitudes that can be accurately determined are
6p and c; 6y and r/l are no longer uniquely deter-

mined. For the longer and shorter axis V¥, {x) and V.(x),

respectively, can be found only approximately, and the
function F.( (k') can be practically computed only for the
fundamental vibration, which is not of great interest.
There is the further difficulty that the angle o on ac—
count of the twist cannot be accurately defined. For
relations such as those holding for engine function I on
figure 20, the angle o = 0 also can be defined as that
for which the fregquency of the first harmonic is a mini-
mum and for the fundamental vibration a maximum. A cor—
responding consideration holds also for the still higher
haruonics. This angle in practice, however, deviates
from zero,as tests kave shown (see p.26) and has differ—
ent values for the different vibrations, The deviation
from zero may be as much as 30°, This necessarily leads
to the direct measurement of the natural frequency of

the crankshaft—propeller system. The test setup, however,
must permit a variation of the elasticity and the moment
of inertia of the rotating mass in order that the cor-—
responding engine may be simulated with sufficient accu-—
racy.

MEASUREMENT OF A PROPELLER

In order to be able to satisfy the condition of ac—
curate simulation of the engine under consideration, the
test setup was constructed as gshown in figures 27a,b. A
rotating mass to which is screwed the unbalanced exciter
weight is displaceable on a steel shaft 120 centimeters
long and can be held in place by a pressure seat. The
mass moment of inertia can be varied by screwing on iron
plates, each of 1.1 kgcms®moment of inertia in steps of
2.4 to 15 kgems=2, With the aid of this apparatus, it is
possible to determine, experimentally, the unknown func—
tion Fg for the range of practical importance. There

is first determined the value v for the propeller

under consideration. For this purpose there is taken in
the neighborhood of the blade root a cross section, which
is typical of the remainder of the blade (fig. 28),
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There is now drawn through the k!  axis a family of
Filkt') - curves by varying -8p- and. c. -Bach.time.the
corresponding value of 6p and c¢ 1s adjusted on the
test stand and the frequency w measured. Then, for

ecach k' = /% on the corresponding Fﬁ(k‘) curve a

point is marked. The line joining all these points gives
a portion of the unknown propeller function Fg(k') not

not computable in advance.

This procedure was carried out for a Ju PAK-dural
adjustable propeller for the BMW "Hornet" engine. The

blade length was chosen ' = 110 centimeters and the
blade width was then obtained as b = 25 centimeters
and blade thickness h = 5,7 centimeters. The ratio

Ju/Jdry at the position =x = } was 16.3, The.magnituie of
V was computed to be approximately 70,and the value
S u(z)ls, 743 kgcmsg. The mass moment of inertia of the
hyb with blade root was 4.93; r/l was approximately
O0.15. On figure 29 the various engine functions

1 — 4900 §#

F (1) = 142 G X

M 9 3
D £ 4 1
1 £:93(3 2900, Y

are denoted by the letters a to k. On table 2 the
values of 8 and (Q° are given for each of the 10
FM(k') functions which were adjusted on the test stand,

On figure 29 the similarity may be seen of the propeller
functions determiuned by this test with those of the homo-
geneous prismatic rod on figure 14, It is to be noted
that in the latter figure the scale of absecissas was
smaller, For the Ju PAX propeller the different harmonics
follow each other more rapidly than for the homogeneous

rod. There were obtained the values n, = 2800, ny = 73080,
n, = 13,200 rpn., For the BMW Electron controllable pro-
pPeller used for comparison, there was obtained n, = 20C0,

ng = 6100, =ng = 10,800 rpn.

The test showed that the first harmonic is practically
independent of the torsionally vibrating system. For this
reason it might be cowputed in advance 1f it were suffi-
cient %o compute the frequency of the blade fixed at the
root, as is possible with the aid of energy methods (ref-—
crences 4 and 5), The assumed rigid end condition at the
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root., however, does not actually occur and the degree of
flxlng, which cdan Dbe dlxierent for ‘sach hub, greatly af—
feots the frequency. The effect of the tw1st which tends
to increase the fregquency must also be taken into account
(reforénce 8), For this reason, the experimental method
is preferred, whlcp enables the simple and accurat“ deter—
mlﬁatlﬁﬁ bf the - requlrcd frequency.

In-: thls connection -there will also ‘be considered the
factors that affect the first charqcterlstlc value L !

of propellers. For the Ju PAK propellers for a value of
v of 70, this value of kg'! 1lies at 2.06. For the pre—

viously mentioned BMW propeller for-a value of v of 50,
it lies at 2.05; and for the As—8 propeller of figure 19

for Vv = 70, "it lies at 1.93., The characteristic values
k,! for known-natural frequency depend on the choice of
the magnitude V- and the latter again on the choice of
the position x = 1, The change in the value of V is

very markeéd oanly where the blade passes over into the
cylindrical shaft, where ¥ increases very strongly. 4%t
a distance of 1C centimeters along the blade, however, it
ig already only slightly affected Dy a change in !, "The
blade naturally can be considered also as extending to
the point- of attachment. This, in the case of the Ju PAK
propelle?, would lead to a value of Vv = 88 and the k'

values all would be- sumaller by 11.2 perceant. The Fg(k!')
function then also must change a little dbut, on the whole,

vill be very similar. The k' wvalues mould then depend,
however , only on the form of the sectlon at the position
of attacnment.— that is, with a thicker shaft the blade

"would have much lower characteristic values. This,
however, is physically unreasonable. Hence the shaft must
be counsidered as belonging to the fixation and not as a
part of the elasticity debtermining the natural frequencies
of the blade. TFor this reason the :Fg(k') function for
the Ju PAK propeller was determined for the value vV = 70,

" EFFECT OF THE CETTRIFUGAL FORCE

A test setup of the kind descr"bed above gives only
the natural frequencies of the system for the case of a
‘nonrotating propeller, There also must be taken into
aceount, therefore, the increase in the stiffness and
hence the mnatural frequency of the blade as a result of
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the centrifugal force in rotation. The increase in the
natural fregquencies by the centrifugal force of propeller
blade fixed at the Toot is given by Liebers (references

4 and 12) as follows: If @ is the natural frequency
for the propeller at rest and w the number .of rota-—
tiong, then for the first three natural frequencies there
hold the relations’:

w,® = w,;® + 1.45 w,®, fundamental vibration
wa® = Tz® + 4,40 w ®  first b i
2 - 2 . u ] armonic
. R = 2 2 .
Wz" = Wiz + 9.20 wz", second harmonic

It is thus a matter of sinply adding to the test values
obtained,_ if the latter are practically identical with

w,; and Wy as can be shown to be the case with the

above described apparatus. OIn account of the large set—
ting angles of the propellers there cannot occur a greater
deviation of the frequencies of the fundamental and first
harmonic fron w, and wz, respectively.

Since the value of Vv reumains the same under the
action of the centrifugal force, the engine function does
not change, but the zero positions of the ZFg(k') branches

lie at higher values of k!, For a speed of n = 1910 -
that 1s, wy = 2C0, . the increments are

w,? = w,® + 58,000

ws® = wg® + 176,000

If, on the average, w, is taken to be 200 and 600,
respectively,(chord) and wp = 700, then w, = 313 and
647, respectively, (chord) and w, = 8l6. This is 56.5
and 7.85 percent for w,; and 16.6 perceni for w,. Ex-
pressed in terms of k! the increase in the fundamental
vibration over the chord is only 25.4 compared to 24,5
which is 3.67 percent., The intersection of the Fglk!')

function corresponding to k' = 3,750 in figure 20 and
k' = 5.625 in figure 21 is shifted to the right by about
4 percent. It is easily seen that the freguency of the

torsional natural vibration of the entire system is
practically not shifted.
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SOIUTION FOR A SEVERAL--I{ASS SYSTEM

There is still to Pe investigated how the natural
frequencies are determined for an in-line engine which
can be represented only by a several-mass system,

Let the system consist of 6 masses — corresponding
in their dimensions approximately to the BHW-IV engine.

8,6 = 0.5 kgenms®
ci_s = 4 X 10° kgem/rad
Cg = 2.66 X 10° kgem/rad

The first three natural frequencies of this system then
lie at

Q. = 635 Q, = 1895 Qy = 3100

1 a

In order to simplify the computation, somewhat, sach pair
of' masses ls combined into one (fig., 20) so that

o
6, _5 = 1 kgems"®

3
X 10 kgem/rad

i
4V}

Ci_g <

The first three natural frequencies are then computed from
the equation

6 7 4 12 2 . 18 . )
w. - 10 Xw + 24 x 10 Xw - 8 x 10 = 0 -
2 = B30 compared with 635 — 0.8 percent
Q = 1750 compared with 1895 — 7.7 pefceﬁt
" Qg = 2550 compared with 3100 — 17.8 percent

Thig deviation is of no significance for our'investigation
and is given only as a matter of interest. Now consider
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the three—mass system., The other magnitudes in the FM(k')

function are assumed to be

30

1l

v which values hold for very large

3
S H(L) 1° = 1200 propellers.

The function FM(k') will now be computed for two

cases. Iao the first case 08y = 0O and in the second case
6y =283 (fig. 31). It can be given, in general, for an
arbitrary number of masses 1if the method of Tolle is used.
This method serves to compute the natural frequendies of

a several-mass system, If M denotes the moment and a
the deflection of any mass, then

2
I"Ii,i+l = Il’Ii'—'l,l - ei w ai
LM aen
8441 5 83 7 —mTT
Ci,i+2
Thus storting at the end mass 7
a, = 1
= 2
1o = -85 w
0, w?
as = 1 = =20
Cige
Mpw = Myp — 65 w® a5, and so forth,

if, nowever, all aj are expressed by a; and all

‘M3 iy, By Myz expressions -of terms with increasing power

of the natural frequency are obtained
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a-l = l
Mlg = "91 wz
8, w®
ag = 1 —-.—i_.___
Ciz
0, B8
Ciz _
4 8, 0,
B, = 1 — w [ (é—— + ——;> + 65 -l—] o —2E
Ces Caxz CigzCaz
MSI = o em e e — e = = - e e e e m e e .

The function for an n mass system may then be written
as

3
Fy (k') - S B ' &n w?
: 3
k! Mp n+1
where e, = 0 gives the zeros and Mn,n+1 = 0 +the in~
finities of the functions. There are obtained the values:
Case I First zero Qy = 630 k' = 4,58
First infinity w = 1420 k! = 6.88
Second zero Qs = 1750 k! = 7.65
Second infinity w = 2450 k!t = 9,05
Third =zero Qz = 2550 kt = 2.23
Case II First zero Q, = 630 k! = 4,58
FPirst infinity w = 848 k' = 5.32
Second zero N = 1750 k! = 7.65
Second infinity w = 1840 k! = 7,85
Third zero Qs = 2550 k' = 9.23
Third infinity w = 2580 k! = 9.30 - |

Figures 32 and 33 show the variation of the "'Fy function

(continuous curve). The three masses were now combined
1nto one and the elastlcltJ 80 chosen that the natural

n LR N e . T
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frequency of this ‘torsionally vibrating system was egual

. to .the. f£irst..of the three-mass system:

’c = 3/912

The substitute function for the first case is then obtained

K

. o -0 s 4
Ty(kt) = 288 (1 — 2,27 x 1077 k")
SEENETE S |

and for the second case

[y _ 400 1 — 2.27 x 107° kt'*
Fy(e') = ==3 B
k'° 2~ 2,27 x 1072 k!

— . 1 =
k'(FM=0) = 4.58; g mm) 5.45

Since the substitubte functicn first begins to deviate from
that of the three—mass function only at a rather great
distance from the k' axis, where the Fg curve runs

"practically vertical, no difference in the values of k!

given by the intersections can occur up to about k' = 6,
Since the first zero is at 4.58, it means that the equiv—
alent system correctly gives another natural frequency,
which lies higher than the first natural frequency of the

2 2 -
system €, by é-—:néigé_ % 100 = 71,5 percent ~ or

4,58

in’ round numbers — 70 percent,: Thus- the higher frequency
should be not much greater than

- B _ - ' \
6,800 - if ap

n = = 4,000
n = 10,200 1if =np = 6,000
n = 17,000 if . np = 10,000

~JIfpher differenceis greater then, having determined the

Fs(k') function on the test stand, the engine function
is accurately combputed or, at least, replaced by the one-,

"two—, or three—mass system and then made to intersect

with the Fs(k') function..
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This concludes' the investigation of the problem of
the coupling of the flexural propeller vibrations with
the torsional crankshaft vibrations and the determination
of the critical engine speeds. In the following there
will be further considered the fundamental stress problems.

THE VIBRATION STRESSES IN THE SYSTEM

A, Theoretical Oonsidérations

In the function Fg(k') zeros are followed by in-

finities, ZFor the vibrations corresponding to the latter
there hold simultaneously the three boundary conditions

y" (0) = 0, y"(0) = O,  y(1) = r Oy

The fourth condition, ccrresponding to the zeros, is
y'(1) = 0. TFor our system this means that the hub is at
rest and the greatest bending moment is at the blade rooct,
In these cases the propeller blade vibrates mainly about
one of the two principal moment—of—inertia axes of the
cross sectioun. Without twist a rod or propeller blade
would vibrate about one of the principal axes only. The
entire system vibrates with the frequency w = Q, the
rotating mass undergoes relatively the greatest displace—
ments and the couponent of the largest bending moment of
the rod in tne torsioral vibration plane amounts to

6p w” @p = ¢ &p

The torsional component system is in resonance. As a re-—
sult of the twist torsional vibrations of the blades may
be excited, but these vibrations will not here be con-
sidered. It may be remarked in passing that they have,

up to the present, been very rarely observed. At the fre-—
guency corresponding to k' = 2,97 in figure 29, the
vropeller blade would thus vibrate in .its fundamental mode
about the chord and at the frequency corresponding to

k' = 3,3 in its first harmonic about the small axis. To
the right and left of each zero of the, Fz(k'!') function
the moment at the blade root. again decreases, the maximum
moment however no longer lying in the direction of one of
one of the principal moment—of—inertia axes of the cross
section, since a2 moment now arises about the other axis.,
In addition to the freguencies corresponding to the zeros,
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vibration of the rod occur simultanecously over the two
.axos and the two moments. in these directions together
give a resultant moment I which makes an angle B

with the torsional vibration plane.(fig. 34). This reo-—
sultant moment must be decomposzd into two perpendicular
components, one of which acts as a pure bending moment

Mg on the shaft. On account of the symmetry in the case

of several blades,these bending moments balance each
other out, but the shaft is acted on by a tensile or com—
pressive force through which axial vibrations of the
crankshaft may be excited (fig. 35). The other-component
Mp Just balances the torsional vibration moment in the
shaft, It follows that, since the torsiograph measures
only this one component that the moment in the hudb is to
bo assumed considerably higher,

FTor the vibrations of the rod corresponding to the
infinities the fourth boundary condition is y" (1) = O,
In this case the bending moment at the blade root is
equal to zeoro and the hub is in motion. These vibration
modes can then only arise if the two infinities of the
Fs(k’) and. FM(ki) functions coincide. This is possi-
ble if the mass moment of inertia of the hub is not caqual
to zero. The frecquency of this vibration is given by

/" B + 8
w =v/ c 25
p oy

and the angular displacement of the hub has its maximun
value, The maximum occurring bending mo.xent then lies
within the propeller blade: A1l the blades would then
be, as it were, in equilibrium; and the rotating mass
would only have to balance the moment due to the vibrat-—
ing hub. Since

eD wa @D = BN wa (I’N

for the displacement of the rotating mass, there is ob-—
tained -- . - - e
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which therefore decreases for given hub displacement as
the ratio, of the hud mass to the rotating mass., The hubd
displacement, however, cannot become large, for ’

2. i b=
oy = Jo) e v

On account K of the setting angle a, y'?l) contributes

-most to the angle‘ Oy For o = 45°J yé?) = yii;; but
y}h (o = 90°) is small compared to y{i% (e = 0°) since

%l)

J(Z)‘ also aththe blade root is much larger than in).
Moreover, yzz) must become smaller the more the resonance-

indicating value of k', for the prismatic homogeneous rod
here considered, differs — for example, from k' = 7,853,
Hence 9y for the vibtrations corresponding to the infinity
positions is small making & also small, since the ratio

6x/9p 'is generally smaller than 1. This holds,also,

approximately for the cases where the point of intersection
of Fyl(k'") with Fgl{k') wnhich point dessrmines bhe res-

onance freguency of the system lies far from the k! axis
and there is a node in the ghaft. These points of inter—
section slways lie below the k' axis.

The displacements of ithe rotating mass for the vi-
brations,the corresponding point of intersection of which
lies above the k' axis, are much greater than ¢y and
there is no node in the shaft. ' .

The position of the point of intersection of the
engine and rod functions determines not only a resonance
frequency of the crankshaft—propeller system but its dis-
tance from the X' axis is at the same time a measure of
the moment arising in the hub,becausg the magnitude
Fylet) = Fg(k') represents the reciprocal value of the

component of the moment at the hub divided by

£ k! 3 2 ]

which acts in the plane of rotation or the propeller disk.
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Hence, the closer the point of intersection lies to the
k! axis the larger is the moment. This is seen with the
aid of figure 36, where the Fg function is plotted for
a = 09 and a = 60° and, furthermore, for o = 600

for the case that the blade is hinge—connected about the
chord and hence a moment on the shaft can be transmitted
only over the smaller axis (dotted). In the figur® are
also given three engine curves, one of which represents
the case that the natural frequency of the torsionally
vibrating system 1is equal to the first harmonic of the
blade about the small axis., This case will be consid-
ered first (curve II). For the angle « = O the blade
vibrates about the small axis in the torsional vibration
plane of the hub. The moment in the hub is obtained as
infinitely large. Siace in the actual case there is
damping a finite deflection will be obtained for the rod
and the torsionally vibrating wmass. Let the defleetion
of the mass be ®Do‘ The intensity of the rod wvibration
on-changing the angle « cannot increase, therefore, for
the case of constant excitation., For any angle the nat-
ural frequency of the system does not vary, since the
point of intersection which deterwines this frequency re-—
mains the sane. There is also, therefore, no change in
the mode of vibration of the rod about the small axis and
the mowment in the blade root. In the torsional vibration
plane, however, a component of the moment is still effec—
tive and hence the balance mowment of the torsionally
vibrating wass 6p w? @Da must decrease, Since ©fp and

w are coastant

o] = ¢
Dy, D, cO0s «

The case is otherwise for engine curve I. With the
blade hinged about the chord there is a change not only
in the frequenecy and hence the wmode of vibration of the
blade but also the distance of the new point of intersec~
tion from the k' axis is greater and the moment there-—
fore smaller (fig. 37). The deflection &p of the

torsionally vibréting mass therefore decreases faster
than as cos «. +In this. case. the angular deflection at
the hub is not egual to zero. Frow equation (4) there
follows the relation
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- so that. for the angle a = O

%, = O, T3

and for the angle «

s
=]
&
]
s
+
2

or

The ratio ®Na/®No is a function of «. It may be de-—

termined as follows. The formula must also hold if wg

approaches Q - that is, for the case first considered.
‘For that case there was obtained

@D“ = ®Do cos o

The fraction

approaches 1, if w, approaches Q. It follows that
®Na/®No approaches cos a., As may be seen from figure 36,

the moment in the hub in the case of fixed end conditions
decreases still more than for hinged end conditions. Thisg
not only shows up in the expression for ®Da by the de—

crease in the fraction bubt also in the fact that the ratio
@H /@ alvays remalns below ¢os &. The reason for this

was. already given above. The more y'?z) falls in the
torsional vibration plané the smaller @Na must become

(fige 38). The angular deflection &y of the hub thus

decreases more rapldly than as cos o, and hence @D fur—
ther decreases. =
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FPigures 39, 40, and 41 sheow the variation of the
angular aeflectlon of the rotating mass of a single—mass
gsystem for the case of the rectangular section rod and
for the propeller. The analggy of the propeller.and rod
is clearly. evident as already seen in figure 19. A com—
parison with the latter shows that for the casces where
the frequency was constant or approximately so, with
.change in the angle «, the angular deflection of the
rotating mass decreased. in proportion. o ecos a, In all
other cases the deflection decreases at a greater rate.
The indicated angle is only a relative one in order to
bring out better the analogy with the rectangular rod.
The greatest absolute deflection of the rotating mass
measured in the center was obtained at an angle of approx—
imately 15° for the fundamental vibration, 0° for the
first harmonic and 30° for the second harmonic.

It should be observed that the above described de-—
pendence cf the deflection &y on the angle a holds only

for cases represented by &ngine curves I and II. For
cases represented by curve III thig holds true only for
the fundamental vibration, but not for the torsional
vibration and firgt harmonic. For o = O there is then
obtained a greater first harmonic about the small axis
and the sscond node lies in the blade and not in the
blade root. With increase in the angle a this vibra-—
tion goes over into the torsional vibration, while it is
"st11l represented by the point of intersection of engine
‘curve III with the second branch of the Fg(k!') curve.

In the case, therefcore, that the torsional vibration is
on the opposed side of the first harmonic, like the fun—
damental vibration of the blade fixed at one end about
the chord, the moment at the hub in the torsiomal vibra—
tion plane decreases soumewhat with decrease in the angle
o but the angular deflection &p of the rotating mass

and hence also the moment transmitted by it to the rod,
need not decrease bécause the mot;on of the hub can in-—

4 R
crease through the increase of yzi) in @N. This is

the case for the torsional vibrations represented in fig—
ure 20 by engine function III and on flgure 21 by engine
function I,,

For the first harmonic in the case of engine func—
tion III ®p is small although the dependence shown in

figure 38 of the hub deflection on the angle o no longer
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applzes because it decreases with further decrease in a.
The, intersected- Fg(k'!') curve then deforms into straight
lines and the p01nt of intersection travels further- up.

until for .a = O phls branch of the Fg(k'!') curve, and

hence also the vi%ration, has entirely vanished.

The préV1ot§’cons1derat10ns have 'shown in which cases
large and small deflections of the rotating mass occur,
In spite. of small®deflections the stress in the propeller
plade -about the chord may be congiderable even for small
zQ),. and the torsiogram on account of the small motion

of the rotating mass would not reveal these dangerous
gstresses.,’ Since the torsional vibration system and par-—
ticularly the propeller blades vibrate only with damping,
energy must be expended by the.exciting torgque. . In con—
sequence, the magnitude of the moment My as well as the
the anglé -{, where My { is the excitation work, are
involved. In the case of the airplane engine and its
equivalent single-mass system the excitation is on the
rotating mass, £f = ®p. For equal frequency, therefore,
all propeller vibrations will be excited with less inten-—
sity the further the point of intersection of the Fy(k!?)

and Fs(k‘) curves is from the k' axis. The stressing

of the propeller Dblade will therefore also become smaller.
From these considerations it follows that the fundamental
vibration may be considered less dangerous as compared
with the torsional vibration and the first harmonic be~
cause conditions in practice are such as represented in
figures 20 and 21.

. If still higher than the first harmonic vibrations
‘are considered, it is seen that their point of intersec—
tion will always lie below the k' axis, provided the
mass of the hub is small erough so that the frequency

6. +

_w = c —.D.____._._N_

6p Oy

is greater. than the harmonic-under consideration., Since
the rotating mass deflection for vibrations the correspond—
ing point of intorsection of which lies far below the k!
axis-is given by the relation:
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this ig favorable. TFor the.higher-harmonics 'a large hub
masg is lgss favorable since, 'as comparison of figures 17
and 18 showg, their corresponding points of iantersection
again lie near the k' axis, There is thus an-increasc
in the moment at the hub which in spite of the small
anguWar dlsblacement can be balanced by the inertia of
the large hudb mass. -

Siace the rod or propeller blade divides the moment
at the hub into two bending moment components in the prin-
cipal vibration directions, that wibration will predominate
about each axis having zero position Fs(k’) = Q0 nearest

to the point of intersection of Fg(k') and Fyulk'),

giving the resonance position. Hence, if the torsional
vibration lies in the neighborhood of the first harmonic
the latter will come into evidence. This is the reason
why tie mode of vibration of the propeller, as initially
remarked for the torsional natural vibration of the test
model (col, 2, table 1), was similar to that of the first
harmonic (col. 3) since, chiefly, the larger motions on
account of the small equatorial moment of inertia are in
evidencs. in this case for both vibrations the mode of
vibration a%out the small axis is very marked and the
blade tip failures that soaetimes occur in wood propellers
may, Jjrdging by the failure location, be caused by the
first harmonic as well as by the torsional vibration. The
more closely together the frequencies lie the greater is
the mounent due one of the vibration modes that must be
added to the other decreasing vibration. The maximum val-
ue of the moment Ilp as a function of the angular setting
is then obtained, neglecting the twist of the blade, not
'at the angle @ = 90° dbut for o = 90 - ¢ where the
tangent of this angle is given by the ratio of the two
pervendicular components of the moment (fl . 42).

The components of thig moment were computed for the
prismatic homogeneous rod for the undamped case from the
function Fg(k') and the results plotted in figure 43,

the ratios of the components My and Mfl to the moment

at the hub MD"being plotted against k' for an angle
a = 60° with Jh/Jfl = 16, and. * = O,

At the asymptotic positions the torsional moment at
the hub HMp is equal to zero. It may be seen from the

curves that: except for the very small regions-about the
resonance positions of the vibrations about the small
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axis for ko! = 1.875; 4.694, ‘and so forth; the moment in

‘the~shaft is entirely balanced by vibrations adout the
echord, This means in practice that the propeller blade
behaves guite similarly so that in the -torsional vibration
the maximum- moment that arises is almost entirely in the
direction of the larger axis. This explains the position
of the failure (fig. 44). The setting for the cross sec—
tion at -the blade roaqt is about 40°. Since only the sine
component acts on the torsional vibration system, only

64 percent . of the moment actually arising at the Dblade
root is cdomputed from the torsiograph deflection, -

v

B, Tests

In order to.obtain a clear picture of the relations
so far considered, mostly from the theoretical viewpoint,
in determining the Fg(k') funection of

the deflections of the Ju PAX propeller (fig. 29); the
rotating mass and hub were measured with the aid of an
attached mirror which threw an image of an illuminated
slot on a screen., For this measurement, however, only
cases ¢ to g can be considered because only for these
cases was the rotating mass of the same magnitude as 1is
necessary for a proper comparison. In addition the blade
tip deflections of the Ju PAK propeller were directly
measured. Under the hesading 45y in tadle 3, 19/18, for

example, denotes that the firgt number is the deflection
of the rotating mass on the screen in centimeters the
other the.deflection of the blade tip in millimeters, both
being for the first harmoniec. Ap gives the deflection

for 'the torsional vidbration. The angular deflections of
the hub were in all cases negligibly small compared to
those of the rotating mass and were therefore not entered.
Besides the cases denoted with the letters which are given
in figure 29, a few further cases were considered in order
that the continuous change in the relations could be more
readily seen. For greater clarity they were not plottede.
Sincé the ccmparison of the deflections must be carried
ot ‘for -8quat excitation while the unbalance excitation
increases as the -square of the speed, all deflections are
referred to the excitation for a définite speed. The
" latter was chosen as 7300 rpm, corresponding to kg' = 3.3,
. From the discussion under section Solution for the
Homogeneous Rod, the torsional vibration frequency for

\
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cases & to e 1lies below and for cases f to k

above the first, harmonic, Since it must be concluded |
from this that there is a sudden jump from the torsional
vibration to the first harmonic and, conversely, there
will first be explained in what sense in cases e and f
an interchange of the torsional vibration with the first
harmonic is to be understood. This jump is determined
only by the condition that each vibration form has been
defined by means of certain physical properties,

In table &, the first column, the frequencies and
deflections of ¢ to g are those which correspond to
the intérsection of the various FM(k') curves with the

Fg(k') ‘%branch, which extends from k' = 2,06 to 3.3.

The frequency runs from n = 5580 to the iimiting value
of 7300 rpn,

The change in the deflections is entirely continu—
out. The case e' which was not plotted corresponds to
the case that an Fy(k') curve goes accurately through
the point of intersection of the Fg(k!'!') curve with the

kt axis at ke' = 3,3; f'!' is a closely neighboring
case which likewise has not been plotted.

The second column of the freguencies and deflectidns
includes those which correspond to the points of inter-—
section of the Fy(k') curves with the Fg(k') Dvranch
which extends from k! = 3.3 to 4.33.

Thus, in all cases which correspond to the same
Fg (k') branch, the variation of the deflections with the

frequency 1s continuous and such a branch gives both the
torgsional vibration and any harmonic of the propeller.
Both Dbranches and their corresponding vibrations are, so
to speak, equivalent, It may be considered that one
branch transfers the torsional vibration to another if
the latter can give rise to a similar vibration. This
is only possible where an Fy(k') curve intersects the

two Fg(k'!') branches in such a manner that the two vi-

brations lie most closely together. Case .e! therefore
represents the limit for which, according to the discus-—
sion under section Solution for the Homogeneous Rod, it

is still possible to speak of the higher natural frequency
of the system as the first harmonic.
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For the individual modes of vibration the following
result is obtained. With the deflections of the rotating
mass known,the Tirst harmonic provides a measure of the
megnitude of the moment at the hub; since Mp = 8p w® Agy

for constaxt 85 and practically constant w depends
only on the deflection Apyy. It may be seen that the

magnitude of the deflection decreases with increasing
distance of the point of intersection of the PM(k')

curve with the Fs(k') curve from the k' axis, in

agreenent with the *theory, and furthernore that the blade
tip deflectlons themselves, and herce also the stresses
in the Plade, decrease. That the deflections for the
vibraticns, the poiant of intersection of which lies above
the L! axis with increasiag distance of the latter,
decrease more rapidly than for those the point of inter-
snction of whiech lies below the axis, is explained by
the presence of a mass moument of inertia of the hub that
ig neb negligible in comparison with vhat of the rotating
mass; and bv the fact that in the first case with increas—
c¢e of the point of lntersection from the k!
aft became wmore rigid while in the second case
. ZTor two points of interssction at egual

distance avove and below the »' axis, there then holds
PR ~
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m bhis relation 1t follows that the deflecticns of
otating mass becone equral when 8y = 0. All this

.
1=
®

T

sn also be understood frow the fact that in the firgs
age toe nub vibrates with the rotating uwassg and in the
econd case against 1%, In both cases, however, there
corresmnonds t0 a given rotating nass deflection approx—
imatelyr the sane blade tip deflection, since the mode of
vibration of the rod must be approximately the same,

)

Q0
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In the torsional vibration the deflections cana no

- longer serve as.a.measure for the moment, because the
frequency continuously changes. Consideration of the
ratio of the blade tip deflection to that of the rotaeting
mass shows, however, that on approaching the first har-
monic the .latter comes more into evidence so that the
torsional wvibration in case e' corresponds approximately
to the first harmonic in case f' and conversely. . )

Another important fact obtained from the experiment
ig that for propellers of the Ju PAK type where the fun-— -
damental vibration of the blades about the chord 1 is
lower than the first harmonic about the small axis the .
blade vibrations set up about the small axis are rela-—
tively large if the torsional vibration lies below the
first harmonic and small if it lies above the latter.

Setting up the same table for an untwisted prismatic
rod, the same general results are obtained except for the
condition that the rod, with regard to the above-mentioned
property of the propeller, bekaveg in just the reverse
manner provided that for the rod under consideration; the
fundamental vibration about the chord likewise lies lower
than the first harmoniec about the small axis. Further
investigations on this question revealed a fundamental
difference between rod and propeller blads. On observing
the direction of vibration of the propeller tips it was
found that as the torsional vibration approaches the first
harmonic the direction rotates in both cases, and that
this occurs in the rod in exactly the opposite sense to
.that in the proveller blade. Pigure 45 shows this turning
of the vibration direction of the propeller blade tip.
From thisg direction of vibration the corresponding vibra-
tion modes of. the blade can be immediately derived. This
is shown in figure 48. For each case the vibration mode
about the small axis (dotted) and that about the chord
(continuous) are drawn as projections in the torsional
vibration or propeller disk plesne.

In the case k' < 3.3 the vibration moment of the
two vibrations has the same direction; for k' = 3.3
there is practically no vidbration about the chord; and
for - k! > 3,3 the moments about .the chord and small axis-
ast in opposite directions,

For the prismatic untwisted rod the theory reguires
a rotation of the direction of vibration as shown in fig
ure 47, Foy the vibrztion modes are obtained from these
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directions such that the components of their moments st
the blade roots in the torsional vibratjon plane have the
combined effect shown in figure 43, as was also observed.
The same behavior is observed with a prismatic nonhomoge-
neous rod with constant thickness and width decreasing
toward the outer end (x = 0) so that the varticular
behavior of the propeller blade should be determined by
the twist. TFurther investigationes will throw more light
on this. In the same way both stroboscopic observatioas
of the vibration phenomenon and the observed elliptic
paths of each point of the proveller blade indicate =
phase shift of the vibration about the chord with resvect
to that about the small axis,.

The difference in the magnitude of the deflections
of the.rod and blade tips, respectively, adbout the small
axis for the torsionzl vibration above the first hsrmonic
compared to those below is thus explained. Guite gener—
ally, it is true that the motion about the small axis in
the torsional vibration is then relatively large if the
moment of the vibration mode abvout the small axis acts
in the same sense as that about the chord (see fig. 43).

Tre results here obteined now make it possitble, in
the case of propellers of the Ju PAXK tyvnes, to state the
approximate diregtion in which the resultant maximum vibre—
tion moment acts in the blade root during torsional vibra-—
tion if the latter falls very closely above or below the
first harmonic. The thin srrzovs in figure 48 give the
direction of the moment about both axes for the vitr-~tions
corresponding to k' = 2.97 and 5.3 — that is My and Mfl'

The quantitative solution of these problems znd de-—
termination of the location of the maximum stress for the
various vibration modes of tne system, which requires
many tedious strain measurements since the vibrations de-
pend to a large extent on the cross-—section shave, will
form the subject of a future investigation of the insti-
tute.

For toth vitrations corresponding to the valus
k' = 2,97 and 3.3, tke torsionally vibrating system vi-
brates in resonance w = . Feor k' = 2.97 the vibra-
tions about the small axis are a minimum, and the funda~ -
mental vibration of the blade is about the chord. At
¥! = 3.3 the vibtration about the:chord is a minimum
and the first harmonic is about the small axis,
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In order to show the difference between a flight
propeller and a rigid propeller, a heavy rigid iron plate
of moment of inertia 67 .= 64 kgems® was attached to the

shaft instead of the propeller and the deflection of the
rotating mass was measured for equal resonance freguency.
This means that instead of the propeller function any
other engine function intersects so that the point of
intersection lies directly on the k' axis., The values
obtained were

X! A A'p v
2,97 35 45 . 1.29
3.3 . 10 29 2.90

————

A'D is the deflection with the plate and V 1is the

ratio of the two deflections. Since in both cases the
freguency woas the same, V at the same time gives the
ratio of the moments in the shaft.

The above is an explanation of the fact that in the
torsiogram the deflections with the flight propeller are
generally smaller than those with a rigid brake propeller,
since the lowest natural frequency of the bdrake propeller
lies higher than that of the torsional vibration system —

that is, Q< 2% n,. These cases are represented in the

Fgq, Py diagrams if the TFy function intersects the k'

axis to the left of the corresponding k' value; for
the homogeneous rod k' = 1,875, Comparison of figures
5 to 15 shows that the resonance frequencies so def ined
are practlcally independent  of. the pitech angle, The
resultant falls practically in the torsional vibration
plane so that 'on the entire brake propeller there is no
greater moment than that computed from the torsiodiagram,

vecause the Fs(k‘) curves for ¢ = 0 and 90  run prac-
tically the same within the range considered. In this
case Mfz(a=o) Mh(a=goo) and hence for any angle o

f Z, o h 0 2 "
C M(g=0) cos o+ M(y_gs ) sin a = Mp = constant

Translétioq by S. Reiss,
National Advisory Committes
for Asronautics.
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TABLE 1.— NATURAL VIBRATION OF A SINGLE-MASS SYSTEM

WITH DIFFERENT PROPELLERS

1051

"Propeller ny pD‘. ng
1. Schwarz, adjustable 3-blade, for : .
He 111; - D = 3308 mm 3000 6800 7600
2. Schvyarz, adjustable for SAM 323
He 50; D= 3%50mm . . « . 2500 6300 5700
3. Suhwarz, adjustable club for SAM 323
= 2160 mm . e e e 4goa - 6600 9000
4. Schafer As-10; D = 2500 mm , . 2950 ' _6600 9300
5. Ju PC |, 2000 6100 5500
6. 3-blade VDM adjustable dural for
Do 17 © v v 4 v v o w h 2700 6700 8800
7. 2-blade VDM adjustable . 2200 5800 6900
8. Heine, wood; D = 2270 mm . 3060 6300 9500
TABLE 2 - TARLE 3
(st | 6 xgems T | 26 7F Fe(e!) | np | Ap | ngy | Aoy
a 15.0 113,000 c 5580 | 57/14 | 7300 1/10
b 9.33 ) 299,000 5880 | 54/13 {7300 1| 1.3/13
c 4.93 345,000 a 6150 | B5/1k4 | 7300 2/1k4
Z ﬁ'gé 221’888 6450 | .36/22 | 7300 | 2.5/16
£ 4.93 750,000 e 6830 | 27/27 | 7300 | L4.5/18
g 1,93 | 1,130,000 7020 | 23/30 | 7300 7/19
h 3.3 1,690,000 e! 71001 16/32 1 7300 10/18
i 2.4 2,320,000
k 2.4 3,530,000 Eh(k'> nop | Aoy ny A
! 7170 10/28 | 7380 14/17
7230 6/20 {7500 | 13/9
7300] 3/17| 7700 | 12/5
£ 7300{ 2/15| 7930 11/2
7300 1/10| 8550 9/0.7
g 73%00;0.5/9 | 9600 6/0.6
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Figure 2.~ Exciter apparatus Figure 16.- Vibration tests
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peller system. pitch setting.
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Flgure 2.-

Figure 27.- Exciter apparatus

for propeller vi-
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to approach the actual engine

conditions.
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peller at the blade root.
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Figure 30,~ Comparison of

three different
engine functions (o = 809,
r =0, Jgy/Jr1 = 16).
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Figure 37.- Torsional vi-
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Figure 41.- Dependence of
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